Inhibition of the multidrug-resistant phenotype by targeting YB-1 with a conditionally oncolytic adenovirus: implications for combinatorial treatment regimen with chemotherapeutic agents.
نویسندگان
چکیده
Bearing in mind the limited success of available treatment modalities for the therapy of multidrug-resistant tumor cells, alternative and complementary strategies need to be developed. It is known that the transcriptional activation of genes, such as MDR1 and MRP1, which play a major role in the development of a multidrug-resistant phenotype in tumor cells, involves the Y-box protein YB-1. Thus, YB-1 is a promising target for new therapeutic approaches to defeat multidrug resistance. In addition, it has been reported previously that YB-1 is an important factor in adenoviral replication because it activates transcription from the adenoviral E2-late promoter. Here, we report that an oncolytic adenovirus, named Xvir03, expressing the viral proteins E1B55k and E4orf6, leads to nuclear translocation of YB-1 and in consequence to viral replication and cell lysis in vitro and in vivo. Moreover, we show that Xvir03 down-regulates the expression of MDR1 and MRP1, indicating that recruiting YB-1 to the adenoviral E2-late promoter for viral replication is responsible for this effect. Thus, nuclear translocation of YB-1 by Xvir03 leads to resensitization of tumor cells to cytotoxic drugs. These data reveal a link between chemotherapy and virotherapy based on the cellular transcription factor YB-1 and provide the basis for formulating a model for a novel combined therapy regimen named Mutually Synergistic Therapy.
منابع مشابه
Etoposide enhances antitumor efficacy of MDR1-driven oncolytic adenovirus through autoupregulation of the MDR1 promoter activity
Conditionally replicating adenoviruses (CRAds), or oncolytic adenoviruses, such as E1B55K-deleted adenovirus, are attractive anticancer agents. However, the therapeutic efficacy of E1B55K-deleted adenovirus for refractory solid tumors has been limited. Environmental stress conditions may induce nuclear accumulation of YB-1, which occurs in multidrug-resistant and adenovirus-infected cancer cell...
متن کاملMultidrug-resistant cancer cells facilitate E1-independent adenoviral replication: impact for cancer gene therapy.
Resistance to chemotherapy is responsible for a failure of current treatment regimens in cancer patients. We have reported previously that the Y-box protein YB-1 regulates expression of the P-glycoprotein gene mdr1, which plays a major role in the development of a multidrug resistant-tumor phenotype. YB-1 predicts drug resistance and patient outcome in breast cancer. Thus, YB-1 is a promising t...
متن کاملmiR-137 restoration sensitizes multidrug-resistant MCF-7/ADM cells to anticancer agents by targeting YB-1.
Multidrug resistance (MDR) to chemotherapeutic agents is a major obstacle to successful treatment in breast cancer patients. The aims of this study were to investigate whether miR-137 was involved in the regulation of MDR, and to explore the mechanism of miR-137 on the sensitivity of MCF-7/ADM cells. miR-137 was downregulated in MCF-7/ADM cells, and its expression was found to inversely correla...
متن کاملAssociation of tcdA+/tcdB+ Clostridium difficile Genotype with Emergence of Multidrug-Resistant Strains Conferring Metronidazole Resistant Phenotype
Background: Reduced susceptibility of Clostridium difficile to antibiotics is problematic in clinical settings. There is new evidence indicating the cotransfer of toxin-encoding genes and conjugative transposons encoding resistance to antibiotics among different C. difficile strains. To analyze this association, in the current study, we evaluated the frequency of toxigenic C. difficile among th...
متن کاملConditionally replicative adenovirus with tropism expanded towards integrins inhibits osteosarcoma tumor growth in vitro and in vivo.
PURPOSE The clinical course of osteosarcoma (OS) demands the development of new therapeutic options. Conditionally replicative adenoviruses (CRAds) represent promising agents for the treatment of solid tumors, because CRAds have an intrinsic replication capacity that allows in situ amplification and extensive tumor infection through lateral spread. The CRAd AdDelta24 has been developed to repli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 66 14 شماره
صفحات -
تاریخ انتشار 2006